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Abstract— The  moduli  set  {2n  1,  2n, 2n   1}  

has  been  widely  used in residue number 

system (RNS)-based computations. Its sign 

extraction problem, albeit fundamentally 

important in magnitude comparison and other 

difficult algorithms in RNS, has received 

considerably less attention than its scaling and 

reverse conversion problems. This brief presents 

a new algorithm for the design of a fast adder-

based sign detector. The circuit is greatly 

simplified by shrinking the dynamic range to 

eliminate large modulo operations with the help 

of the new Chinese remainder theorem. Our 

synthesis results with the XILINX ISE, show 

that the proposed design outperforms all the 

existing adder-based sign detectors reported for 

this moduli set in area and speed for n ranges 

from 5 to 25 in the step of 5. 

 

Index Terms— Chinese remainder theorem 

(CRT), computer arithmetic, residue number 

system (RNS), RNS scaling, sign detection. 

 

I. INTRODUCTION 

 

 In addition, sign recognition within an 

RNS isn't as efficient as modular procedures, for 

example addition, subtraction, and multiplication, 

due to its complexity. A higher-efficiency sign 

recognition unit for that moduli set is presented. 

The sign recognition unit is concurrent and 

appropriate for VLSI implementation in line with 

the suggested sign recognition formula. Sign 

recognition plays an important role in branching 

procedures, magnitude evaluations, and overflow 

recognition. Since the sign details are hidden in 

every residue digit inside a residue number system 

(RNS), sign recognition within an RNS is much 

more difficult than that within the weighted number 

system, where the sign is easily the most significant 

bit (MSB) [1]. The sign recognition problem 

continues to be investigated by many people 

scientists. An over-all theorem comes by creating 

the required conditions for sign recognition. The 

sign recognition for any selected type of RNS is 

transported out like a sum modulo 2 of numbers 

within the connected mixed radix system (MRS). 

Inside sign recognition technique according to 

fractional representation is suggested to lessen the  

sum modulo M within the conversion formula to 

some sum modulo 2. Inside sign recognition 

formula in line with the new Chinese remainder 

theorem (CRT) II is presented. The modulo 

procedures within the sign recognition formula are 

bounded by size vM. Inside sign recognition 

formula uses the nth mixed radix digit in mixed-

radix conversion (MRC) to identify the sign 

function. Up to now, may be the only brief to make 

use of the combinational logic to apply an 

indication recognition formula according to. 

However, the technique can't be extended with 

other moduli sets. The moduli set, only including 

the kinds of 2n and 2n-1, continues to be 

researched extensively recently due to its efficiency 

for modulo procedures and reverse conversion. 

Within this brief, an indication recognition formula 

is presented for that moduli set . The dynamic 

power is as stated by the synopsis power compiler, 

which models the switching activity using static 

probability and toggle rate. The experimental 

results indicate the suggested sign recognition unit 

offers significant savings in delay, area and power 

in comparison using the sign recognition models. 

First, an indication recognition formula is presented 

for that restricted moduli set including modulo 2n 

within the RNS. The suggested sign recognition 

formula requires only adding the modulo2n. Then, 

a brand new sign recognition unit is produced for 

the moduli set in line with the suggested sign 

recognition formula. The Kodak play touch 

camcorder only includes a carry save adder (CSA), 

a comparator, along with a carry generation unit. 

The suggested formula may be the first suggested 

for that moduli set [2]. The accomplished 

efficiency is preferable to those of other 

techniques, for example calculations according to 

ROM technology and specialized calculations 

based. This brief is organized the following. The 

suggested sign recognition formula for that 

restricted moduli set. Is definitely the sign 

recognition unit for that moduli set . The particulars 

the implementation from the suggested unit with 

evaluations of area, time, and power after which is 

definitely the comparison results. 
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 In this paper, Section 2 presents a 

literature review of the published work related to 

sign detection in RNS. Section 3 basic 

preliminaries and notations. Section 4 presents the 

proposed sign detection algorithm, while Section 5 

presents the proposed hardware implementation of 

the algorithm. Section 6 performs hardware 

synthesis and modeling for the proposed work and 

for the most competitive published structures and 

compares the results.  

 

II. LITERATURE REVIEW 

 

 The general idea behind sign detection in 

RNS is based mainly on reverse decoding of 

residue digits into their binary equivalent. The 

binary value is then checked if it belongs to the 

positive or negative range. However, such an 

approach is very demanding [2], [3], [4]. 

Nevertheless, there have been considerable efforts 

to reduce the time and hardware requirements of 

sign detection operation [5], [6], [7], [8], [9], [10], 

[11], [12], [13], [14]. Vu [5] presented a sign 

detector based on fractional representation where 

each residue digit is applied to a ROM. The outputs 

of the ROMs, expressed as fractional values, are 

applied to multi-operand adders. The sign is the 

most significant bit of the sum. Alia and Martinelli 

[6] presented a sign detection structure that uses a 

base extension and requires two multi-operand 

modulo adders and two modulo multipliers. 

Tomczak [7] presented a sign detector for the 

moduli set. The structure of this sign detector 

consists of a multi-operand adder, two 

carrygeneration circuits and a post-processing 

circuit. Wang et al. [8] presented a residue to 

binary converter for the moduli set which can be 

easily customized to be a sign detector. It requires a 

2n bit carry-save adder network and a 2n bit carry-

generation circuit. Xu et al. [9] introduced an 

algorithm for sign detection for the moduli set.  

 

III. PRELIMINARIES AND NOTATIONS 
RNS is characterized by a set of N co 

prime numbers, known as the moduli set {m1, m2, . 

. . ,mN }, i.e., GCD(mi ,m j ) = 1∀ i _= j . Any 

integer X can be represented by an N-tuple (x1, x2, . 

. . , xN ) in this moduli set. Each residue xi is the 

least nonnegative remainder computed by dividing 

X by the modulus mi , which can be expressed 

mathematically as xi = |X|mi for i = 1, 2, . . . , N. 

The product of all moduli is called the dynamic 

range M, i.e., M = _N i=1 mi. Any integer X that 

lies within 0 ≤ X < M will have a unique residue 

representation. 

An integer X within the dynamic range 

can be recovered from its residue representation 

(x1, x2, . . . , xN ) by applying the CRT [5] 

X=|   
 
       

     
     

                 (1)      

 where = M/mi and |M−1i |mi is the multiplicative 

inverse of |Mi |mi . ˆ 

To represent a signed integer X in RNS, M is 

divided into two symmetrical half ranges for the 

representation of positive and negative integers. 

When M is even, the range of signed integers that 

can be unambiguously represented in RNS is 

[−M/2, M/2 − 1]. Similarly, for odd M, the range of 

unambiguously represent able signed integers in 

RNS is [−(M − 1)/2, (M − 1)/2]. The signed integer 

ˆX can be represented using the same residue 

representation as an unsigned integer X for the 

same moduli set. The relationship between ˆX and 

X is given as follows: 

                 =    
 

 
   -[

 

 
                     (2) 

When ˆX ≥ 0, the residue representation of 

X can be mapped to that of ˆX in the range of [0, 

M/2 − 1] if M is even and [0, (M − 1)/2] if M is 

odd. In a similar way, when ˆX < 0, the residue 

representation of X can be mapped to that of ˆX in 

the range of [M/2, M − 1] if M is even and [(M + 

1)/2, M − 1] if M is odd [22]. Thus, the sign of ˆX 

can be detected as follows. 

When M is even  

Sign[  ]= 
           

 

 
    

        
 

 
     

                         (3) 

When M is odd 

Sign[  ]= 
           

     

 
 

         
     

 
     

                    (4) 

Properties 1 and 2 [5] are employed in 

order to simplify some arithmetic operations in the 

derivation of our proposed sign detection circuit for 

RNS {2n − 1, 2n, 2n + 1}. 

Property 1: The modulo 2n − 1 multiplication of an 

n-bit binary number x and r exponent of two is 

equivalent to a circular left shift (CLS) of the 

binary bits of x by r position. 

                 =CL  (x,r)          (5)       

 

where CLS n(x, r ) represents the circular shift of 

an n-bit binary number x by r bits to the left. 

Property 2: As a corollary of Property     

           =                =           
       ,r) (6)  

where x is the one’s complement of integer x 

 

IV. PROPOSED SIGN DETECTION 

ALGORITHM FOR RNS {2n − 1, 2n, 2n 

+1} 
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 Let (x1, x2, x3) be the residue 

representation of an integer X with respect to the 

moduli set {m1, m2, m3} = {2n − 1, 2n, 2n + 1}. 

Since the dynamic range M of this moduli set can 

be factored into 2n and 22n − 1, the sizes of the 

modulo operations required for detecting the sign 

of ˆX from its equivalent residue representation of 

X can be substantially reduced by scaling (x1, x2, 

x3) in the residue domain by 22n − 1. This will 

map the lower half range [0, 23n−1 − 2n−1) of X to 

the lower half range [0, 2n−1) of the scaled integer 

Y and the upper half range [23n−1 − 2n−1, 23n − 

2n) of X to the upper half range [2n−1, 2n) of Y , as 

shown in Fig1. 

 
Fig.1. Mapping of the half ranges of integer X in 

[0, M) to the half range of its scaled integer Y in 

[0, M_). 

 

 By shrinking the dynamic range from M = 

23n − 22n to M_ = 2n, its half range can be easily 

detected from the MSB of the scaled integer Y 

.This new concept of sign detection in {2n −1, 2n, 

2n +1} can be made very efficient provided that 

scaling by 22n − 1 as well as the reverse 

conversion of the scaled residues into Y can be 

computed efficiently from the residues x1, x2, and 

x3. As only the MSB of Y is needed for the sign 

detection of ˆX , a full reverse conversion from (x1, 

x2, x3) is not required. 

 To simplify the scaling by 22n −1 in the 

residue domain, the new CRT [23], also known as 

CRT-I, is used to convert X into a weighted sum of 

its residues modulo 22n − 1. According to CRT-I 

X=  +     (                       
           (7) 

where k1m3 = |1|m1m2 and k2m3m1 = |1|m2 . With 

m1 = 2n−1, m2 = 2n, and m3 = 2n + 1, we have 

X=  +(  +1)|        )+    
        

                  (8) 

It can be proved that the multiplicative inverses of 

|2n + 1|2n (2n−1) and |22n − 1|2n are given by k1 = 

22n−1 − (2n − 1) and k2 = −1, respectively. These 

closed form expressions of k1 and k2 are proved as 

follows. 

Proof of k1 = 2
2n

−1 − (2
n 
− 1) 

  |    
             =|[     -(          

           =|     -                  

                                      =|     (      
           =1. 

proof of        
                     |  (                   -

1)   =|-   +)   =1. 

                    Substituting the values 0f            in 

to (8), we have 

              X=                    
1(x1−−x3)−2n−1(x2−x1)|2n(2n−1) 

                       =                        
                                 (9) 

                  By scaling X by    -1,the scalied 

integer Y can be obtained by  

           Y=[
 

     
]=[

  

     
   

       

     
            (10) 

 Where 

 

 Z = |22n−1(x1 − x3) − (2n − 1)(x2 − x3)|2n(2n−1). 

 Since x3  [0, 2n ], x3 < 22n − 1. 

Therefore _(x3/22n − 1)  = 0, 

and Y can be written as 

 
As _(|x|m1m2 /m1)  = |_(x/m1) |m2 

from [11], (11) can be rewritten as 

 

 
Let H = 22n−1(x1 − x3). Since H = m_(H/m)  + 

|H|m for any integer H and m, we have 

 

 
Taking mod 2n operation on both the sides of (13), 

we have 

 

 
Since 

 |H|2n = |22n−1(x1 − x3)|2n = 0 and |2n − 1|2n = −1 

 

 
 

Substituting (15) into (12), we have 

 
 

If Y  [0, 2n−1), X falls in the lower half 
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range of M and (x1, x2, x3) represents a positive 

integer, i.e., ˆX ≥ 0. Otherwise, if Y [2n−1, 2n), X 

falls in the upper half range of M and (x1, x2, x3) 

represents a negative integer, i.e., ˆX < 0. 

 

IV. HARDWARE IMPLEMENTATION 
 

The residues x1, x2, and x3 can be 

represented in a binary form as x1 = x1,n−1x1,n−2 . 

. . x1,0, x2 = x2,n−1x2,n−2 . . . x2,0 and x3 = x3,n 

x3,n−1 . . . x3,0, respectively, where xi, j denotes 

the j th bit of the residue xi . The binary vectors of 

x1 and x2 are of n bits but the binary vector of x3 is 

of n + 1 bits. In (16), one of the terms in the 

modulo 2n − 1 sum involves the operation |−22n−1 

x3|2n−1, which cannot be directly implemented by 

Property 2, since x3 has n+1 bits. To apply the CLS 

property on the one’s complement of x3 as in (6), 

x3 is expressed as x3 = 2n x3,n + x3,n−1x3,n−2 . . . 

x3,0. Since |2n x3,n|2n−1 = x3,n, the MSB x3,n of 

x3 can be logically OR with x3,0 to form an n-bit 

binary vector x_3= |x3|2n−1 =|x3,n−1x3,n−2 . . . 

x_3,0 |2n−1, where x_3,0= x3,0∨ x3,n and ∨  

denotes a logical OR operator. 

 |H|2n−1 in (16) can then be implemented 

using the CLS operations of Properties 1 and 2 to 

obtain 

  Y = ||u1 + u2|2
n
−1 + x3 − x2|2

n           
                       

(17) 

where 

u1 = |22n−1 x1|2n−1 = CLS n (x1, 2n − 1) = x1,0 

x1,n−1 . . . x1,1                           (18) 

 

u2 = |22n−1 ￣x3|2n−1 = CLSn( ￣x_3 , 2n − 1 )= 

￣x_3,0 x3,n−1 . . . ￣x3,1        (19) 

The term |u1 + u2|2n−1 can be expressed as 

 

 |u1 + u2|2n−1 = _|u1 + u2 + 1|2n , if u1 + u2 ≥ 2n 

− 1 u1+u2,otherwise.                                                                    

(20) 

 

 
Figure 2 Generation of carry-in signal Cin 

 

 

Figure 3 Example of the generation of the carry 

signal C1 and v for n=8 

Hence,  

||u1 + u2|2n−1|2n = |u1 + u2 + cin|2n, 

where cin ∈  {0, 1}. As |−x2|2n = 2n − x2 = ￣x2 + 

1, (17) can be written as 

       Y = |u1 + u2 + cin + x3 + ￣x2 + 1|2
n
.               

(21) 

The generation of the carry-in signal cin is 

shown in Fig. 2. The condition u1 +u2 ≥ 2n is 

detected by C1 = 1 and the signal C1 can be 

generated by parallel prefix operators [2]. As an 

example, the carry signal C1 for n = 8 can be 

generated by the circuit shown in Fig. 3. The 

condition u1+u2 = 2n−1 = 11 . . . 11 can be 

detected 

by C2 = 1. C2 is generated by ￣w ∧  v, where w = 

∧ n−1 i=0 gi and v = pn−1:0 = ∧ n−1 i=0 pi, where 

∧  denotes a logical AND operator. The signals gi 

and pn−1:0 have already been generated in the 

computation of C1. Consequently, the condition 

u1+u2 ≥ 2n −1 for cin = 1 can be detected by 

                                    cin = C1 ∨  C2.           (22) 

The two addends, u2 and x3, in (21) can be further 

simplified as follows: 
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Figure 4 Proposed sign detection for {2n − 1, 2n, 

2n +1} 

 

When x3,n = 0, x_ 3,0 = x3,0 ∨  0 = x3,0. Then 

                           |u2 + x3|2n = |x3,0x3,n−1x3,n−2 . 

. . x3,1 − ￣x3,0|2n .                (24) 

When x3,n = 1, since x3 ∈  [0, 2n], x3,n−1x3,n−2 . . 

. x3,0 =00 . . . 0. Hence, x_3,0= x3,0 ∨  x3,n = 1 and 

 
 

To satisfy both (24) and (25) 

       |u2 + x3|2n = |u3 − ￣x3,0|2n                (26) 

where the n-bit binary vector u3 is given by  

 u3 = (x3,0 ∨  x3,n)x3,n−1x3,n−2 ..x3,1.              

(27) 

Substituting (26) into (21), we have 

   Y = |u1 + u3 + ￣x2 + cin + 1− ￣x3,0|2n .  (28) 

If x3,0 = 1, 1 − ￣x3,0 = 1, and if x3,0 = 0, 1 − 

￣x3,0 = 0. Hence, the term 1− ￣x3,0 in (28) can 

be replaced by x3,0 and 

   Y = |u1 + u3 + ￣x2 + cin + x3,0|2n .      (29) 

The sign of ˆX can be detected by the 

MSB of Y. An n-bit carry save adder (CSA) can be 

used to add the three n-bit operands, u1, u3, and ￣ 

x2, to produce an n-bit sum A = an−1an−2 . . . a0 

and an n-bit carry vector B = bn−1bn−2 . . . b10. 

Due to the modulo 2n addition, the final carry 

output bit bn of the CSA need not be generated. As 

b0 = 0, it can be replaced by x3,0 of (29) before the 

MSB of Y is computed by a simplified parallel 

prefix adder of A and B with the input carry bit c−1 

= cin. The prefix adder is simplified by keeping 

only the carry generation network for the 

computation of carry signal cn−1, from which the 

sign of ˆX can be detected by sign( ˆX) = an−1 ⊕ 

bn−1 ⊕ cn−1. The architecture of the proposed sign 

detector is shown in Fig. 4, where the circuit 

diagram for the simplified prefix adder is depicted 

in Fig. 5 for n = 8. 

Example 1: For n = 5, {m1, m2, m3} = 

{31, 32, 33}, M = 31 × 32 × 33 = 32 736, and M/2 

= 16 368. The signed integer ˆX = −11 161 can be 

represented by the residue representation (x1, x2, 

x3) = (30, 7, 26) corresponding to the unsigned 

integer X = 21 575 in the same moduli set.  

The binary representation of the residues 

are x1 = 111102, x2 = 001112, and x3 = 0110102. 

According to (18), (19), and (27), u1 = 011112, u2 

= 100102, and u3 = 011012. Also, x3,0 = 0. Since 

u1 + u2 = 01111 + 10010 = 33 > 32, C1 = 1. Since 

33 _= 31, C2 = 0. According to (22), cin = C1 ∨  

C2 = 1. The computation of Y in (29) is illustrated 

in Fig. 6. Since MSB of Y = 1, the integer ˆX 

represented by (30, 7, 26) is negative. 

 

 
Figure 5 Simplified prefix adder for n=8 

 
 Figure 6 Computation of Y for example 1 

 

V. SIMULATION & SYNTHESIS 

RESULTS 

  

 The proposed adder based sign detector is 

synthesised and simulated using XILINX ISE. Fist 
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the design is coded using Verilog and then is 

synthesised in XILINX and verified the design 

without any errors. Next the design is implemented 

on SPARTAN 3E FPGA family. And the stimulus 

to the design is applied trough test feature, to very 

the design. 

 

 
Figure 7 simulation result of proposed adder 

based sign detector 

 

 
Figure 8 RTL schematic of proposed adder 

based sign detector 

 
Figure .9 Technological schematic diagram. 

      

 
  Figure.10 Summary of device utilization 

COMPARISON TABLE 

 Area Delay 

Existing 

Method 

Number of 

slices 

used=3986 

89.55ns 

Proposed 

method 

Number of 

slices 

used=4 

8.105ns 

 

VI. CONCLUSION 
 

 In this brief, a new sign detection 

algorithm for RNS {2
n
 −1, 2

n
, 2

n
 + 1} is proposed, 

which leads to a high-speed and area-efficient 

adder-based implementation. Our experimental 

results show that the proposed circuit smaller, 

faster, and more power efficient than the latest 

existing sign detectors, respectively. The work 

presented in this thesis can be extended in several 

ways. As RNS seems to be suitable for many 

modern algorithms, investigating more applications 

is one possibility of future work. Further 

applications in signal processing, e.g., echo 

cancellations are worth further investigation, as 

well as the circuits with imprecision.  
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